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Abstract 

Objective: Biological effects of infrared laser energy at various exposure parameters have been characterized in previous 

in vitro and animal studies. However, the impact of pulse repetition rate (PRR) has not been evaluated in this context. The 

purpose of this investigation was to assess the influence of PRR on cytokine secretion from peripheral blood mononuclear 

cells (PBMCs) subjected to pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser energy. 

Materials and Methods: Rat PBMCs were cultured in vitro then stimulated using a lipopolysaccharide concentration of 0 

or 100 ng/ml. Cultures received Nd:YAG laser radiation (1064 nm, 5 W, 30 s) at PRR of 0 (untreated controls), 20, 30, 40, 

or 60 Hz. Concentrations of tumor necrosis factor-α (TNF-α), macrophage inflammatory protein (MIP)-1α, macrophage 

inflammatory protein (MIP)-2, monocyte chemoattractant protein-1 (MCP-1), interferon-gamma-induced protein (IP)-10, 

interleukin (IL)-6, and IL-10 were recorded using a magnetic microsphere immunoassay. The main effects of PRR and LPS 

stimulation on cytokine concentrations, and the interaction between PRR and LPS stimulation, were assessed using two-

way analysis of variance. Bonferroni post hoc tests were used to identify pairwise differences between groups. 

Results: The main effect of PRR was statistically significant for MIP-1α (P = 0.018), TNF-α (P = 0.025), MCP-1 (P < 

0.001), MIP-2 (P = 0.013), and IL-6 (P = 0.031). Five of six pro-inflammatory cytokines exhibited significantly lower mean 

concentrations in laser-exposed compared with control cultures at one or more PRR. However, no statistically significant 

differences were found between PRR groups. 

Conclusions: Under the described conditions, statistically significant differences in cytokine secretion were observed 

between laser-exposed and control cultures, consistent with prior reports. However, PRR appears to be an irrelevant factor 

in immunomodulation of PBMCs.   
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Introduction 

Periodontitis—which represents the most prevalent 

noncommunicable chronic inflammatory condition affecting 

humans—is a multifactorial disease resulting in severe 

periodontal tissue destruction and tooth loss in more than one 

billion individuals worldwide [1,2]. 

Putative periodontal pathogens within dental plaque represent 

the etiology of periodontitis [3-5]. However, most of the 

tissue destruction is not directly attributable to 

microorganisms or their products. Rather, loss of alveolar 

bone and clinical attachment derives primarily from the host 

inflammatory response [6]. Complex dental biofilms result in 

the emergence of a panoply of host-derived cytokines that 

mediate resorption of alveolar bone and loss of attachment [6-

9].  

Standard therapy for periodontitis includes professional 

mechanical plaque removal and establishment of an effective 

oral hygiene regimen that routinely disrupts biofilm 

development [1]. This approach has served as the mainstay of 

periodontal therapy for more than a century [10]. However, 

periodontists have also attempted to modify the inflammation 

and tissue destruction induced by etiological 

microorganisms—an approach termed “host modulation 

therapy” (HMT) [11]. HMT strategies include use of bone-

sparing, antiproteinase, and anti-inflammatory agents 

[11,12]. These pharmacological interventions have had 

limited clinical applicability due in part to adverse effects of 

the medications. Electromagnetic radiation may represent a 

means of therapeutically altering host immunological 

function without risk of untoward medication-related effects 

[13]. 

It has long been recognized that electromagnetic radiation can 

interact with living tissues and that it is possible for some of 

these interactions to produce therapeutic effects [14-18]. 

Laser radiation is unique in that it consists of collimated, 

monochromatic Gaussian light beams that can be directed 

toward specific regions on the surfaces of living tissues [19]. 

Reduction in inflammation has been one of the most 

reproducible effects of laser photobiomodulation (PBM), a 

term encompassing photophysical and photochemical 

phenomena unrelated to thermal tissue responses [13,20-23]. 

Wavelengths in the red and near infrared spectral regions 

(600 through 1200 nm) have shown favorable anti-

inflammatory effects [13]. Yamaura and colleagues exposed 

TNF-α-stimulated synoviocytes isolated from rheumatoid 

arthritis patients to infrared diode laser energy (810 nm), with 

fluence of 5 or 25 J/cm2 [24]. The authors reported dose-

dependent reduction in mRNA and protein levels of TNF-α, 

IL-1β, and IL-8 [24]. Similarly, Hwang et al. compared IL-8 

and IL-6 expression in cytokine-stimulated macrophages 

subjected to laser energy (405, 532, or 650 nm) at doses up to 

1.6 J/cm2 [25]. All wavelengths significantly reduced IL-8 

expression compared with controls; only the 405 nm 

wavelength produced statistically significant reduction in IL-

6 expression [25]. In activated dendritic cells derived from 

the mouse femur, Chen and colleagues found reduced cell-

surface markers of inflammation and IL-12 secretion in 

response to infrared diode laser irradiation (810 nm, 0.3 or 3 

J/cm2) [26]. 

Researchers have also assessed the anti-inflammatory effects 

of lasers emitting in this segment of the electromagnetic 

spectrum using animal models. Safavi et al. assessed the 

influence of He-Ne laser irradiation (632.8 nm, 7.5 J/cm2) on 

IL-1β, interferon-Υ (IFN- Υ), and TNF-α expression in 

wounded gingiva of male Wistar rats [27]. The authors noted 

statistically significant reduction in IL-1β and IFN- Υ 

expression in the laser-irradiated groups compared with 

controls [27]. Aimbire and colleagues evaluated the effect of 

Ga-AsI-Al diode laser irradiation (650 nm, 5.2 J/cm2) on 

TNF-α concentrations in diaphragm muscle tissue from male 

Wistar rats [28]. The authors recorded statistically significant 

reduction in TNF-α concentrations in the laser-irradiated 

group compared with untreated controls [28]. Although 

existing evidence from in vitro and animal studies suggest a 
 

Abbreviations: HMT: Host Modulation Therapy, PBM: Photobiomodulation, PRR: Pulse Repetition Rate, PBMCs: 

Peripheral Blood Mononuclear Cells, RPMI: Roswell Park Memorial Institute, FBS: Fetal Bovine Serum, LPS: 

Lipopolysaccharide, LPT: Laser Periodontal Therapy, SRP: Scaling and Root Planning 
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possible clinical role for laser irradiation in limiting 

inflammation, the ideal wavelength remains unidentified, and 

parameters such as fluence, irradiance, pulse duration, pulse 

repetition rate (PRR), exposure time, and number of 

exposures have not been optimized. The purpose of this 

investigation was to assess the influence of PRR on cytokine 

secretion levels in stimulated and unstimulated rat PBMC 

cultures subjected to near-infrared radiation from a 

neodymium-doped yttrium aluminum garnet (Nd:YAG) 

laser. 

Materials and Methods 

Cell Culture 

Frozen Rat peripheral blood mononuclear cells (PBMCs) (IQ 

Biosciences, Berkeley, California, USA) were thawed and 

suspended in Roswell Park Memorial Institute (RPMI) 

medium, supplemented with 10% fetal bovine serum (FBS) 

penstrap. To remove cryoprotectant, cells were centrifuged 

for 7 minutes at 700 g, then transferred to 96-well plates (2 x 

104 cells per well). Cells were stimulated with 0 or 100 ng/ml 

of lipopolysaccharide (LPS), and incubated for 24 hours at 

37⸰C.  

Irradiation Parameters 

An Nd:YAG laser (1064 nm, Lightwalker AT, Fotona, 

Dallas, Texas, USA) was used to irradiate cultures, and a 320-

micron optical fiber directed the laser beam perpendicularly 

to the plated cells at a distance of 1.8 mm. A standardized 

support system ensured a reliable and reproducible laser 

position. For each group, exposure time and power output 

remained constant at 30 seconds and 5 W, respectively. PRR 

was set at 0 (untreated controls), 20, 30, 40, or 60 Hz (Figure 

1, Table 1). After irradiation, cells were returned to the 

incubator for one hour at 37˚ C.  

 

Figure 1. Diagram of 96-well plate depicting the experimental design. Exposure time and average power remained constant at 30 s and 5 

W, respectively. For each group, laser parameters differed only in the pulse repetition rate—0 (untreated control cultures), 20, 30, 40, or 

60 Hz. 

 

Table 1. Nd:YAG laser irradiation parameters by treatment group. 

Group 

Average 

Power 

(W) 

Peak 

Power 

(W) 

Pulse 

Energy 

(mJ) 

Pulse 

Duration 

(µs) 

Repetition 

Rate 

(Hz) 

Fiber 

Diameter 

(µm) 

Irradiance 

at tip 

(W/cm2) 

Fluence 

at tip* 

(J/cm2) 

Distance 

to target 

(mm) 

Irradiation 

time 

(s) 

Control 0 0 0 0 NA NA 0 0 NA 0 

1 5 2500 250 100 20 320 6217 311 1.8 30 

2 5 1667 167 100 30 320 6217 207 1.8 30 

3 5 1250 125 100 40 320 6217 155 1.8 30 

4 5 833 83 100 60 320 6217 103 1.8 30 
*Per pulse 
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Evaluation of Cytokine Concentrations  

Supernatant was extracted and analyzed using a magnetic 

microsphere immunoassay (MAGPIX System, Luminex, 

Austin, Texas, USA) permitting quantification of IL-6, IL-10, 

MIP-1α, MIP-2, MCP-1, TNF-α, and IP-10. The sensitivities 

for these assays were 30.7, 2.7, 0.8, 9.0, 9.0, 1.9, and 1.4 

pg/ml, respectively (Table 2). The analysis software 

(MAGPIX System, Luminex) processed assay images and 

determined cytokine/chemokine concentrations in pg/ml 

using standard curves. 

 

Table 2. Inflammatory mediators evaluated by magnetic microsphere immunoassay and the associated minimum detectable 

concentrations (MDCs) 

Analyte 
2-Hour Protocol  

MDC (pg/mL) MDC + 2 SD 

(pg/mL) 1 Interleukin-6 (IL-6) 30.7 86.2 

2 Interleukin-10 (IL-10) 2.7 6.9 

3 Macrophage inflammatory protein-1α (MIP-1α) 0.8 2.1 

4 Macrophage inflammatory protein-2 (MIP-2) 9.0 21.8 

5 Monocyte chemoattractant protein-1 (MCP-1) 9.0 21.8 

6 Tumor Necrosis Factor-α (TNF-α) 1.9 7.2 

7 Interferon gamma-induced protein 10 (IP-10) 1.4 3.5 

 

Statistical Analysis 

For each evaluated cytokine, a two-way analysis of variance 

was conducted to compare the main effects of LPS 

stimulation and PRR, and the interaction between these 

factors, on cytokine concentration. Bonferroni post hoc tests 

were used to elucidate statistically significant pairwise 

differences among PRR levels (0, 20, 30, 40, and 60 Hz). 

Differences were accepted as significant at an alpha level of 

0.05. 

Results 

Cytokine secretion by rat PBMCs was evaluated using 

magnetic microsphere immunoassay following exposure to 

LPS and treatment with directed Nd:YAG laser energy with 

PRRs ranging from 20 to 60 Hz (20, 30, 40, and 60 HZ) at 

constant pulse duration (100 μs), average power (5 W), and 

irradiation time (30 s). Thus, pulse energy ranged from 83 to 

250 mJ, peak power ranged from 833 to 2500 W, and fluence 

ranged from 103 to 311 J/cm2 (Table 1). The degree to which 

LPS increased cytokine concentrations varied by cytokine, 

with the largest increases noted for IP-10, TNF-α, and MIP-2 

(Figure 2). Notably, mean concentrations of five pro-

inflammatory cytokines were significantly lower in laser-

exposed versus control LPS-stimulated PBMC cultures 

(Table 3). These were the macrophage/monocyte-produced 

signaling molecule TNF-α (F (4, 110) = 2.90, P = 0.025), the 

chemotactic inflammatory cell recruiting protein MIP-1α (F 

(4, 110) = 3.13, P = 0.018), a related protein known as MIP-

2 (F (4, 110) = 3.35, P = 0.013), the monocyte/macrophage 

chemoattractant protein MCP-1 (F (4, 110) = 10.51, P < 

0.001), and the proinflammatory interleukin IL-6 (F (4, 110) 

= 2.76, P = 0.031). The model for IL-10 was not statistically 

significant (F(9, 110) = 1.67, P = 0.105), and the main effect 

of PRR was not statistically significant for IP-10 (F(4, 110) = 

2.01, P = 0.098). The interaction term between LPS 

stimulation and PRR was significant for the MIP-1α (F(4, 

110) = 3.39, P = .012) and TNF-α (F(4, 110) = 2.79, P = .030) 

models. 

A trend for peak effect at PRRs of 20 Hz and 40 Hz was noted 

(Figure 2). Maximal reduction the in mean concentrations of 

IP-10 and MIP-2 was observed at PRR of 20 Hz, whereas 

maximal reduction in the mean concentrations of MIP-1α, 

MCP-1, IL-6, and IL-10 occurred at 40 Hz. It is important to 

note that these observations include some concentration 

differences that did not reach statistical significance.  
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Figure 2. Cytokine secretion in response to pulsed neodymium-doped yttrium aluminum garnet laser irradiation at various pulse 

repetition rates in lipopolysaccharide-stimulated and unstimulated peripheral blood mononuclear cell cultures. Statistically significant 

decreases in concentration compared with controls (no laser irradiation) are identified by asterisks. 

 

All cytokines evaluated except IL-10 exhibited a trend for 

concentration reduction in laser-irradiated cultures compared 

with controls, with MIP1-α, TNF-α, MCP-1, MIP-2, and IL-

6 each exhibiting a statistically significant decrease in 

concentration at one or more PRRs. Bonferroni post hoc tests 

identified the specific PRRs that resulted in statistically 

significant concentration differences compared with controls 

(Table 4). No statistically significant differences were noted 

between laser-irradiated cultures. Thus, PRR had no 

detectable influence on any cytokine concentration in this 
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Table 3. Results of two-way factorial ANOVA for each cytokine evaluated 

MIP-1α 

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 686106.37a 9 76234.04 40.93 <.001 

Intercept 2534268.15 1 2534268.15 1360.71 <.001 

LPS 623689.25 1 623689.25 334.87 <.001 

PRR 23326.62 4 5831.66 3.13 .018 

LPS * PRR 25245.42 4 6311.36 3.39 .012 

Error 204870.87 110 1862.46   

Total 4306291.87 120    

Corrected Total 890977.24 119    

a. R Squared = .770 (Adjusted R Squared = .751) 

TNF-α 

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 69762.81a 9 7751.42 73.27 <.001 

Intercept 85882.54 1 85882.54 811.81 <.001 

LPS 66559.77 1 66559.77 629.16 <.001 

PRR 1225.05 4 306.26 2.90 .025 

LPS * PRR 1180.24 4 295.06 2.79 .030 

Error 11637.04 110 105.79   

Total 217768.59 120    

Corrected Total 81399.85 119    

a. R Squared = .857 (Adjusted R Squared = .845) 

MCP-1 

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 188278.65a 9 20919.850 6.02 <.001 

Intercept 1385150.30 1 1385150.297 398.78 <.001 

LPS 15047.14 1 15047.135 4.33 .040 

PRR 146017.24 4 36504.311 10.51 <.001 

LPS * PRR 15607.98 4 3901.995 1.12 .349 

Error 382083.34 110 3473.485   

Total 2125855.83 120    

Corrected Total 570361.99 119    

a. R Squared = .330 (Adjusted R Squared = .275) 

MIP-2 

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 1516999.412a 9 168555.490 54.953 <.001 

Intercept 2696576.963 1 2696576.963 879.152 <.001 

LPS 1434227.702 1 1434227.702 467.594 <.001 

PRR 41048.325 4 10262.081 3.346 .013 

LPS * PRR 23176.701 4 5794.175 1.889 .117 

Error 337397.158 110 3067.247   

Total 5875212.463 120    

Corrected Total 1854396.570 119    

a. R Squared = .818 (Adjusted R Squared = .803) 

IP-10 

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 3365757.27a 9 373973.03 57.01 <.001 

Intercept 3998789.17 1 3998789.17 609.62 <.001 

LPS 3228033.05 1 3228033.05 492.11 <.001 

PRR 52799.34 4 13199.84 2.01 .098 

LPS * PRR 50828.43 4 12707.11 1.94 .109 

Error 721549.12 110 6559.54   

Total 10484044.58 120    

Corrected Total 4087306.39 119    

a. R Squared = .823 (Adjusted R Squared = .809) 

IL-6 
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Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 62224.02a 9 6913.78 2.88 .004 

Intercept 616962.20 1 616962.20 256.66 <.001 

LPS 14936.23 1 14936.23 6.21 .014 

PRR 26526.82 4 6631.71 2.759 .031 

LPS * PRR 11256.24 4 2814.06 1.171 .328 

Error 264422.37 110 2403.84   

Total 1036932.62 120    

Corrected Total 326646.39 119    

a. R Squared = .190 (Adjusted R Squared = .124) 

IL-10 

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 2089.38a 9 232.15 1.67 .105 

Intercept 33253.80 1 33253.80 238.80 <.001 

LPS 935.60 1 935.60 6.72 .011 

PRR 682.54 4 170.64 1.23 .304 

LPS * PRR 285.59 4 71.40 .51 .726 

Error 15317.97 110 139.25   

Total 55915.29 120    

Corrected Total 17407.35 119    

 

Table 4. Bonferroni post hoc tests 

MIP-1α 95% Confidence interval 

(I) Laser (J) Laser Mean Difference (I-J) Std. Error Sig. Lower bound Upper bound 

Control 20 Hz 44.25* 12.46 .006 8.56 79.94 

 40 Hz 51.35* 12.46 <.001 15.66 87.03 

TNF-α 95% Confidence interval 

(I) Laser (J) Laser Mean Difference (I-J) Std. Error Sig. Lower bound Upper bound 

Control 20 Hz 9.46* 2.97 .019 .96 17.97 

 40 Hz 10.77* 2.97 .004 2.26 19.28 

 60 Hz 11.14* 2.97 .003 2.63 19.65 

MCP-1 95% Confidence interval 

(I) Laser (J) Laser Mean Difference (I-J) Std. Error Sig. Lower bound Upper bound 

Control 20 Hz 92.10* 17.01 <.001 43.36 140.84 

 30 Hz 49.64* 17.01 .043 .90 98.38 

 40 Hz 87.47* 17.01 <.001 38.73 136.21 

 60 Hz 94.45* 17.01 <.001 45.71 143.19 

MIP-2 95% Confidence interval 

(I) Laser (J) Laser Mean Difference (I-J) Std. Error Sig. Lower bound Upper bound 

Control 20 Hz 58.96* 15.99 .004 13.16 104.76 

 40 Hz 59.30* 15.99 .003 13.55 105.15 

 60 Hz 48.07* 15.99 .033 2.27 93.87 

IL-6 95% Confidence interval 

(I) Laser (J) Laser Mean Difference (I-J) Std. Error Sig. Lower bound Upper bound 

Control 40 Hz 43.76* 14.15 .025 3.21 84.30 

Based on observed means.  

*Mean difference is significant at the .05 level. 

 

Discussion 

Despite clinical advantages associated with laser periodontal 

therapy (LPT), the therapeutic use of pulsed Nd:YAG laser 

energy in the treatment of periodontitis remains a 

controversial topic within the field of periodontology [29-33]. 

Currently available evidence supports only modest clinical 

benefit beyond scaling and root planing (SRP) alone when 

Nd:YAG lasers are used adjunctively with SRP [33]. High 

heterogeneity among studies and lack of controlled clinical 

research has hampered the ability of clinicians to draw 

conclusions regarding LPT efficacy and predictability 

[32,33]. It has been suggested that PBM-induced modulation 

of inflammation is a unique benefit of LPT among available 

periodontitis treatments [34]. However, it will be necessary 
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to define specific laser energy parameters (pulse duration, 

PRR, average power, spot size, fluence, cumulative energy 

delivered) that produce immune modulation in a predictable 

and governable manner. Toward that objective, this study 

evaluated the impact of Nd:YAG laser PRR variation on the 

secretion of cytokines in unstimulated and LPS-stimulated rat 

PBMC cultures. 

Prior studies have consistently reported statistically 

significant reductions in various inflammatory markers in 

response to PBM using devices that emit in the red and 

infrared portions of the electromagnetic spectrum [13,20-28]. 

Observations in the present study are consistent with these 

prior investigations. Only two evaluated cytokines did not 

exhibit a statistically significant change in concentration in 

any laser-exposed group—IP-10 and the potent anti-

inflammatory cytokine IL-10. No previous investigation 

using a near infrared laser has directly assessed the influence 

of PRR on cytokine secretion. Under the described 

conditions, PRR exerted no statistically significant influence 

on levels of the evaluated mediators of inflammation.   

The high number of technical parameters with potential to 

influence outcome measures represents a major challenge in 

conducting and interpreting research into the biological 

effects of lasers. It has been suggested that fluence (also 

called energy density) may be the parameter most appropriate 

for defining the “dose” applied [13]. For multiple outcome 

measures, biphasic dose responses have been reported. Over 

a range of PBM exposure levels, a response maximum is 

reached at some value. When the exposure is increased 

beyond that threshold, the observed positive response 

diminishes or vanishes. At even higher fluence values, the 

investigator may find a negative or inhibitory result [13]. It is 

likely that the results recorded in the present study were 

highly dependent upon the specific irradiation parameters 

applied and the target cell type. Although PRR had no 

apparent effect on cytokine concentrations in the present 

study, repetition rate could influence cytokine secretion when 

lower or higher fluence values are applied. 

LPS, which is a constituent of gram-negative bacterial cell 

walls, was used to stimulate PBMC cell cultures in this in 

vitro study. The bacterial species that are frequently isolated 

together at sites exhibiting bone and attachment loss—

Porphyrmonas gingivalis, Tannerella forsythia, and 

Treponema denticola—are facultative gram-negative 

anaerobes [3-5]. Thus, the LPS used in this study represented 

an attempt to mimic a stimulant that mononuclear cells 

encounter at periodontitis-affected sites. However, the model 

used in this study in no way replicates the complexity of the 

in vivo microenvironment. At periodontitis sites receiving 

LPT, laser energy interacts with a diverse set of bacterial 

species within the biofilm, host cells of the innate and 

adaptive immune systems, and numerous cell types within the 

sulcular epithelium, gingival connective tissue, alveolar bone, 

and periodontal ligament. Thus, the complex cascade of gene 

expression and intercellular signaling likely induced by LPT 

will be challenging to fully characterize [35-41]. 

Conclusions 

Under the described conditions, statistically significant 

differences in cytokine secretion were observed between 

laser-exposed and control cultures. However, findings of the 

present study do not support a correlation between PRR and 

cytokine concentrations. These observations may be highly 

specific for the target cell type utilized and the radiation 

parameters applied.  
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